

Welcome to grc’s documentation!

Generic Colorizer

Note

Inspired by http://kassiopeia.juls.savba.sk/~garabik/software/grc.html

grc allows you to colorize (even transform) shell output.

WARNING - Pending Project Rename

In order to make roon on pypi for the original grc project, this project
will be renamed to strec soon. The new name was chosen to be very different
from grc to show that it’s a different project. While both do the same,
they do it in a very different manner, and more importantly, the config format
is different.

Alternatives

The original grc

Available at http://kassiopeia.juls.savba.sk/~garabik/software/grc.html

While the original grc is a bit smarter with subprocesses, this rewrite
focuses on ease of use (including Installation, Configuration and
source-code access [https://github.com/exhuma/grc]).

Installation should also honour the Linux FHS [http://www.pathname.com/fhs/]

sed or awk

sed and awk are extremely powerful tools, and can certainly do what
grc does. They will certainly perform better on large streams. It’s their
intended use afterall. However, they both use an archaic and arcane syntax
for their scripts. Additionally, if you would like to colorize your output
with these, you need to work with ANSI escape sequences. grc aims to
simplify this by having a more readable Configuration syntax, and by hiding
the ANSI escape sequences.

See the installation document for more information.

Usage

Read lines from stdin and emit modified/colorized lines on stdout

Note

This is the best supported mode of operation.

Synopsis

<some_process> | grc -c <config>

Example

tail -f /var/log/apache2/access.log | grc -c apache_access

	Advantages

	
	Only the stream you are sending to grc is affected.

	No known side-effects

	Disadvantages

	
	As grc only sees a stream, it cannot determine what application is
emitting the stream. You have to specify the config manually.

Spawn a subprocess, capture it’s output

Note

Use this if you don’t care about the downsides, and are lazy to
type.

Synopsis

grc <some_procss>

Example

grc aptitude search python

	Advantages

	
	Much less to type

	Can auto-detect the config by using the sub-process application name.

	Disadvantages

	
	Spawning a subprocess and interacting with it’s IO is non-trivial on a
TTY/PTY. To simplify the code, grc uses pexpect to do the IO
magic.

	stdout and stderr of the subprocess are combined into one
stream, which is then emitten on grc’s stdout. 1

	The output may not use all of the available terminal width. 1

Configuration

grc searches three locations for configuration files in order:

	~/.grc/conf.d/<confname>.yml

	/etc/grc/conf.d/<confname>.yml

	/usr/share/grc/conf.d/<confname>.yml

The first matching config file wins. This means, you can override any
system-wide configs with your own concoctions.

Syntax

grc uses YAML [http://www.yaml.org] as config syntax. Comparing to .ini and json files
(both included in the Python stdlib), this syntax lends itself much better to
the requirements of this application.

Basic structure

	The config file is separated into sections (contexts). It has to have at least
the root context.

	Each context has a list of rules. These rules fire if a line contains a
given regular expresssion. The first matching rule wins.

	The line will then be replaced with the string contained in the replace
value. You can use back-refs if you used capture groups in your regular
expressions. Colours can be insterted using ${t.color_name}. You should
always insert a ${t.normal} after using a color, to reset to the terminal
default. The colors are provided by the package blessings [https://github.com/erikrose/blessings]. The t
variable is a reference to a blessings terminal instance so you should be
able to use it as it is documented on the blessings homepage.

	Rules may define, that processing should not stop using the continue:
yes flag. In that case, the same line will be matched with the following
rule as well.

	Additionally, rules may “push” another context onto the stack. If that’s the
case, the rule will be processed, and all following lines will be matched
against rules contained in the context named by the push value.

	If in a non-root context, a rule may “pop” the current context from the
stack using the pop: yes action.

See Config Reference for more details.

Annotated Example

the primary context. This section must exist!
root:
 - match: '^(running)(.*)'
 # demonstrating replacements /and/ colorizing
 replace: '*** ${t.green}\1${t.normal}\2'

 - match: '^(writing)(.*)'
 replace: '>>> ${t.yellow}\1${t.normal}\2'

 - match: '^(reading)(.*)'
 replace: '<<< ${t.blue}\1${t.normal}\2'

 - match: '^(Processing dependencies for)(.*)'
 replace: '${t.green}\1${t.normal}\2'
 # switch to the "dependencies" context
 push: dependencies

 - match: '^(Installing.*)'
 replace: '>>> ${t.green}\1${t.normal}'

the "dependencies" context
dependencies:
 - match: '^(Finished processing dependencies for)(.*)'
 replace: '${t.green}\1${t.normal}\2'
 # Revert back to the "root" context
 pop: yes

 - match: '^(Searching for)(.*)$'
 replace: '\1${t.blue}\2${t.normal}'
 # switch to the "dependency" context
 push: dependency

the "dependency" context
dependency:
 # Let's prepend all lines with a small indent and pipe.
 # To do this, we specify a "match-all" regex, replace the line, and
 # specify that we will continue with the next matching rule using
 # "continue"
 - match: '(.*)'
 replace: ' | \1'
 continue: yes

 # Note that after the above rule, all lines are prepended with
 # additional text. We need to include this in the regex!
 - match: '^ \| (Installing.*)'
 replace: ' | >>> ${t.green}\1${t.normal}'

 - match: '^ \| (Running.*)'
 replace: ' | ${t.green}\1${t.normal}'

 - match: '^ \| (Best match.*)'
 replace: ' | ${t.green}\1${t.normal}'

 - match: '^ \| (WARNING|warning)'
 replace: ' | ${t.yellow}\1${t.normal}'

 - match: '^ \| Installed(.*)'
 replace: ' | Installed\1\n'
 pop: yes

Config Reference

Main Level

	root

	Specifies the primary context

All other keys represent a context you pushed somewhere.

Contexts

A context is simply a list of rules

Rules

	match

	Type: string

A python regular expression [http://docs.python.org/library/re.html#regular-expression-syntax]. If this matches somewhere in the input
line, all occurrences will be replaced with the string specified in
replace.

Note

While YAML does not enforce you to enclose strings in quotes, I
is strongly recommend you use single quotes for regexps to
avoid trouble with string escapes (backslashes).

	replace

	Type: string

If continue is false (the default), this string will be emitted to
stdout. Otherwise, this string will be passed to the next matching
rule. Not that the following rule sees the modified string!

Note

While YAML does not enforce you to enclose strings in quotes, I
is recommend using single quotes if using backreferences
(backslashes).

	continue

	Type: boolean

If true, don’t write the string yet to stdout. Instead, pass it on to
the next matching rule.

	push

	Type: string

Pushes a new context onto the stack. All following lines from stdin
will be matched agains rules in the new context.

Note

This may change in a future release to give you yet more control

	pop

	Type: boolean

If this is set to true, then return to the previous context after this
rule has been processed. If in the root context, this is a no-op.

Note

This may change in a future release to give you yet more control

Screenshots

	A python setup session

	Before

	After

	[image: pysetup-shot-b]

	[image: pysetup-shot-a]

	Simple aptitude search

	Before

	After

	[image: aptitude-shot-b]

	[image: aptitude-shot-a]

	Apache access_log

	Before

	After

	[image: apache_access-shot-b]

	[image: apache_access-shot-a]

Footnotes

	1(1,2)

	grc uses pyexpect to deal with TTY pecularities. This will
however have two side-effects. First, stdout will be combined with
stderr. And second, terminal width may not be well respected.

Indices and tables

	Index

	Module Index

	Search Page

Index

Installation

GRC follows standard Python packaging guidelines and can be installed using:

pip install grc

If you do not have administrative permissions on your system you can install it
as user:

pip install --user grc

Or, in any case install it into an isolated environment:

python3 -m venv /path/to/your/installation
/path/to/your/installation/bin/pip install grc

Generic Colorizer

Note

Inspired by http://kassiopeia.juls.savba.sk/~garabik/software/grc.html

grc allows you to colorize (even transform) shell output.

WARNING - Pending Project Rename

In order to make roon on pypi for the original grc project, this project
will be renamed to strec soon. The new name was chosen to be very different
from grc to show that it’s a different project. While both do the same,
they do it in a very different manner, and more importantly, the config format
is different.

Alternatives

The original grc

Available at http://kassiopeia.juls.savba.sk/~garabik/software/grc.html

While the original grc is a bit smarter with subprocesses, this rewrite
focuses on ease of use (including Installation, Configuration and
source-code access [https://github.com/exhuma/grc]).

Installation should also honour the Linux FHS [http://www.pathname.com/fhs/]

sed or awk

sed and awk are extremely powerful tools, and can certainly do what
grc does. They will certainly perform better on large streams. It’s their
intended use afterall. However, they both use an archaic and arcane syntax
for their scripts. Additionally, if you would like to colorize your output
with these, you need to work with ANSI escape sequences. grc aims to
simplify this by having a more readable Configuration syntax, and by hiding
the ANSI escape sequences.

See the installation document for more information.

Usage

Read lines from stdin and emit modified/colorized lines on stdout

Note

This is the best supported mode of operation.

Synopsis

<some_process> | grc -c <config>

Example

tail -f /var/log/apache2/access.log | grc -c apache_access

	Advantages

	
	Only the stream you are sending to grc is affected.

	No known side-effects

	Disadvantages

	
	As grc only sees a stream, it cannot determine what application is
emitting the stream. You have to specify the config manually.

Spawn a subprocess, capture it’s output

Note

Use this if you don’t care about the downsides, and are lazy to
type.

Synopsis

grc <some_procss>

Example

grc aptitude search python

	Advantages

	
	Much less to type

	Can auto-detect the config by using the sub-process application name.

	Disadvantages

	
	Spawning a subprocess and interacting with it’s IO is non-trivial on a
TTY/PTY. To simplify the code, grc uses pexpect to do the IO
magic.

	stdout and stderr of the subprocess are combined into one
stream, which is then emitten on grc’s stdout. 1

	The output may not use all of the available terminal width. 1

Configuration

grc searches three locations for configuration files in order:

	~/.grc/conf.d/<confname>.yml

	/etc/grc/conf.d/<confname>.yml

	/usr/share/grc/conf.d/<confname>.yml

The first matching config file wins. This means, you can override any
system-wide configs with your own concoctions.

Syntax

grc uses YAML [http://www.yaml.org] as config syntax. Comparing to .ini and json files
(both included in the Python stdlib), this syntax lends itself much better to
the requirements of this application.

Basic structure

	The config file is separated into sections (contexts). It has to have at least
the root context.

	Each context has a list of rules. These rules fire if a line contains a
given regular expresssion. The first matching rule wins.

	The line will then be replaced with the string contained in the replace
value. You can use back-refs if you used capture groups in your regular
expressions. Colours can be insterted using ${t.color_name}. You should
always insert a ${t.normal} after using a color, to reset to the terminal
default. The colors are provided by the package blessings [https://github.com/erikrose/blessings]. The t
variable is a reference to a blessings terminal instance so you should be
able to use it as it is documented on the blessings homepage.

	Rules may define, that processing should not stop using the continue:
yes flag. In that case, the same line will be matched with the following
rule as well.

	Additionally, rules may “push” another context onto the stack. If that’s the
case, the rule will be processed, and all following lines will be matched
against rules contained in the context named by the push value.

	If in a non-root context, a rule may “pop” the current context from the
stack using the pop: yes action.

See Config Reference for more details.

Annotated Example

the primary context. This section must exist!
root:
 - match: '^(running)(.*)'
 # demonstrating replacements /and/ colorizing
 replace: '*** ${t.green}\1${t.normal}\2'

 - match: '^(writing)(.*)'
 replace: '>>> ${t.yellow}\1${t.normal}\2'

 - match: '^(reading)(.*)'
 replace: '<<< ${t.blue}\1${t.normal}\2'

 - match: '^(Processing dependencies for)(.*)'
 replace: '${t.green}\1${t.normal}\2'
 # switch to the "dependencies" context
 push: dependencies

 - match: '^(Installing.*)'
 replace: '>>> ${t.green}\1${t.normal}'

the "dependencies" context
dependencies:
 - match: '^(Finished processing dependencies for)(.*)'
 replace: '${t.green}\1${t.normal}\2'
 # Revert back to the "root" context
 pop: yes

 - match: '^(Searching for)(.*)$'
 replace: '\1${t.blue}\2${t.normal}'
 # switch to the "dependency" context
 push: dependency

the "dependency" context
dependency:
 # Let's prepend all lines with a small indent and pipe.
 # To do this, we specify a "match-all" regex, replace the line, and
 # specify that we will continue with the next matching rule using
 # "continue"
 - match: '(.*)'
 replace: ' | \1'
 continue: yes

 # Note that after the above rule, all lines are prepended with
 # additional text. We need to include this in the regex!
 - match: '^ \| (Installing.*)'
 replace: ' | >>> ${t.green}\1${t.normal}'

 - match: '^ \| (Running.*)'
 replace: ' | ${t.green}\1${t.normal}'

 - match: '^ \| (Best match.*)'
 replace: ' | ${t.green}\1${t.normal}'

 - match: '^ \| (WARNING|warning)'
 replace: ' | ${t.yellow}\1${t.normal}'

 - match: '^ \| Installed(.*)'
 replace: ' | Installed\1\n'
 pop: yes

Config Reference

Main Level

	root

	Specifies the primary context

All other keys represent a context you pushed somewhere.

Contexts

A context is simply a list of rules

Rules

	match

	Type: string

A python regular expression [http://docs.python.org/library/re.html#regular-expression-syntax]. If this matches somewhere in the input
line, all occurrences will be replaced with the string specified in
replace.

Note

While YAML does not enforce you to enclose strings in quotes, I
is strongly recommend you use single quotes for regexps to
avoid trouble with string escapes (backslashes).

	replace

	Type: string

If continue is false (the default), this string will be emitted to
stdout. Otherwise, this string will be passed to the next matching
rule. Not that the following rule sees the modified string!

Note

While YAML does not enforce you to enclose strings in quotes, I
is recommend using single quotes if using backreferences
(backslashes).

	continue

	Type: boolean

If true, don’t write the string yet to stdout. Instead, pass it on to
the next matching rule.

	push

	Type: string

Pushes a new context onto the stack. All following lines from stdin
will be matched agains rules in the new context.

Note

This may change in a future release to give you yet more control

	pop

	Type: boolean

If this is set to true, then return to the previous context after this
rule has been processed. If in the root context, this is a no-op.

Note

This may change in a future release to give you yet more control

Screenshots

	A python setup session

	Before

	After

	[image: pysetup-shot-b]

	[image: pysetup-shot-a]

	Simple aptitude search

	Before

	After

	[image: aptitude-shot-b]

	[image: aptitude-shot-a]

	Apache access_log

	Before

	After

	[image: apache_access-shot-b]

	[image: apache_access-shot-a]

Footnotes

	1(1,2)

	grc uses pyexpect to deal with TTY pecularities. This will
however have two side-effects. First, stdout will be combined with
stderr. And second, terminal width may not be well respected.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/aptitude_before.png
TUUOUDOODO - <DDD

gre $ aptitude search
git-arch
git-buildpackage
git-cola
git-completion
git-core
git-cvs
git-daemon-run
git-doc
git-email
git-gui
git-load-dirs
git-svn
Tibgit-ruby
libgit-rubyl .8
stgit—contrib

fast, scalable, distributed revision control

Syste

Suite to help with Debian packages in Git reposits

highly caffeinated git gui

fast, scalable, distributed revision control
fast, scalable, distributed revision control
fast, scalable, distributed revision control
fast, scalable, distributed revision control
fast, scalable, distributed revision control
fast, scalable, distributed revision control
Import upstream archives into git

fast, scalable, distributed revision control

syste
syste
syste
syste
syste
syste

syste

Ruby’ implementation of the Git revision control s
Ruby implementation of the Git revision control s
set of contributed script to help working with st

_images/pysetup_after.png
- grc $./env/bin/python setup.py develop | ./env/bin/grc -c pysetup
sk running develop

x4k running egg_info

>>> writing requirements to grc.egg-info/requires txt

>>> writing gre.egg-info/PKG-INFO

>>> writing top-level names to grc.egg-info/top_level txt
>>> writing dependency_links to gre.egg-info/dependency._
<<< reading manifest file 'grc.egg-info/SOURCES. txt

>>> writing manifest file 'grc.egg-info/SOURCES txt'

4k running build_ext

Creating /mnt/exhuma/work/gre/env/1ib/python2_6/site-packages/gre.egg-link (link to .)
lgrc 1.@devi is already the active version in easy-install.pth

>>> Installing gre script to /mnt/exhuma/work/grc/env/bin

nks. txt.

Installed /mnt/exhuma/work/gre
[Processing dependencies for gre
[Searching for PyYANL==3 10
Best match: PyYAML 3.10
Processing PyYAML-3 10-py2_ 6-1inux-i686_egg
PYYAML 3.10 is already the active version in easy-install.pth

1.0devi

Using /mnt/exhuma/work/grc/env/1ib/python2.6/site-packages/PyYANL-3.16-py2 6-1inux-i686_egg
Finished processing dependencies for grc==1.@devi

_images/apache_access_before.png
L grc $ head /var/log/apache2/access.log

192 168 1.13 — - [11/Dec/2011:09:47:48 +0100]
o Microsoft-WebDAV-MiniRedir/6.1.7601"
192 168.1.13 — ~ [11/Dec/2011:09:47:50 +0100]
81 icrosoft-WebDAV-MiniRedir/6.1.7601"
192 168 1.13 — — [11/Dec/2011:09:47:52 +0100]
"Microsoft-WebDAV-MiniRedir/6.1.7601"

192 168 1.13 — - [11/Dec/2011:10:03:52 +0100]
o Microsoft-WebDAV-MiniRedir/6.1.7601"
[192 168 1.13 — - [11/Dec/2011:10:03:54 +0100]
1 " "Microsoft-WebDAV-MiniRedir/6.1.7601"
192 168 1.13 — — [11/Dec/2011:10:03:56 +0100]
"Microsoft-WebDAV-MiniRedir/6.1.7601"
192168 1.13 - - [11/Dec/2011:10:06:05 +0100]
Microsoft-WebDAV-MiniRedir/6 1.7601"
1.13 - - [11/Dec/2011:10:06:07 +100]
icrosoft-WebDAV-MiniRedir/6.1.7601"
192 168.1.13 — [11/Dec/2011:10:06:09 +0100]
"Microsoft-WebDAV-MiniRedir/6.1.7601"

19 1.13 - - [11/Dec/2011:10:08:04 +0100]
o Microsoft-WebDAV-MiniRedir/6 1 7601"

"OPTIONS

"PROPFIND

"PROPFIND

"OPTIONS

"PROPFIND

"PROPFIND

"OPTIONS

"PROPFIND

"PROPFIND

"OPTIONS

o HTTP/1.1" 200 22|
HTTP/1.1" 405 5|

HTTP/1 1" 405 574 "

HTTP/1.1" 200 22|
& HITP/1.1" 405 5|

HTTP/1 1" 405 574 "

HTTP/1.1" 200 22|
4 HTTP/1.1" 405 5|

HTTP/1 1" 405 574 "
HTTP/1.1" 200 22|

_images/aptitude_after.png
I /env/hln/grc —c aptitude

git-arch fast, scalable, distributed revision contr
git-buildpackage - Suite to help with Debian packages in Git
git-cola - highly caffeinated git gui

git-completion -

git-core - fast, scalable, distributed revision contr
git-cvs - fast, scalable, distributed revision contr
git-daemon-run - fast, scalable, distributed revision contr
git-doc - fast, scalable, distributed revision contr
git-email - fast, scalable, distributed revision contr
git-gui - fast, scalable, distributed revision contr
git-load-dirs ~ Import upstream archives into git

git-svn - fast, scalable, distributed revision contr
Tibgit-ruby ~ Ruby implementation of the Git revision co
libgit-rubyl .8 ~ Ruby implementation of the Git revision co

stgit—contrib _ set of contributed script to help working

_images/pysetup_before.png
- gre $./env/bin/python setup.py develop
running develop

running egg_info

writing requirements to grc.egg-info/requires txt
writing gre.egg-info/PKG-INFO
writing top-level names to grc.egg-
writing dependency_links to gre.egg-info/dependency_links. txt

reading manifest file 'grc.egg-info/SOURCES. txt'

writing manifest file 'grc.egg-info/SOURCES. txt'

running build_ext

Creating /mnt/exhuma/work/gre/env/1ib/python2_6/site-packages/gre.egg-link (link to .)
lgrc 1.@devi is already the active version in easy-install.pth

Tnstalling grc script to /mnt/exhuma/work/gre/env/bin

Installed /mnt/exhuma/work/gre
Processing dependencies for gr
[Searching for PyYANL==3.10
Best match: PyYAML 3.10
Processing PyYAML-3 10-py2_ 6-1inux-i686_egg

PYYAML 3.10 is already the active version in easy-install.pth

1.0devi

Using /mnt/exhuma/work/grc/env/1ib/python2.6/site-packages/PyYANL-3.10-py2 6-1inux-1686.egg
Finished processing dependencies for gre==1.@devi

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to grc’s documentation!

_static/up.png

_images/apache_access_after.png
L grc $ head /var/log/apache2/access.log | ./env/bin/grc -c

192.168.1.13 - - [11/Dec/2011:@9:47:48 +0100]
20 Microsoft-WebDAV-MiniRedir/6.1.7601"
192.168.1.13 - — [11/Dec/2011:@9:47:50 +0100]
581 "Microsoft-WebDAV-MiniRedir/6.1.7601"
192.168.1.13 - - [11/Dec/2011:@9:47:52 +0100]
"Microsoft-WebDAV-MiniRedir/6.1.7601"
[192.168.1.13 - - [11/Dec/2011:10:03:52 +0100]
20 *—* "Microsoft-WebDAV-MiniRedir/6.1.7601"
[192.168.1 .13 — - [11/Dec/2011:10:03:54 +0100]
581 " *Microsoft-WebDAV-MiniRedir/6.1.7601"
192.168.1.13 - - [11/Dec/2011:10:03:56 +0100]
"Microsoft-WebDAV-MiniRedir/6.1.7601"
192.168.1.13 - - [11/Dec/2011:10:06:05 +0100]
20 "Microsoft-WebDAV-MiniRedir/6.1.7601"
192 1.12 - - [11/Dec/2011:10:06:07 +0100]
581 "Microsoft-WebDAV-MiniRedir/6.1.7601"
192.168.1.13 - - [11/Dec/2011:10:06:09 +0100]
"Microsoft-WebDAV-MiniRedir/6.1.7601"

[19: 1.12 - - [11/Dec/2011:10:08:04 +0100]
Microsoft-WebDAV-MiniRedir/6.1 7601

"OPTIONS

PROPFIND

PROPFIND

"OPTIONS

PROPFIND

PROPFIND

"OPTIONS

PROPFIND

"PROPFIND

"OPTIONS

apache_access

- HITP/1 1" 200 2|
HITP/1 1" 405

L HTTP/1.1" 405 574 ™
e mow HITP/1.1" 200 2

: HTTP/1.1" 405

~ HITP/1.1" 405 5T4
== HITP/1.1" 200 2
= HTTP/1 1" 405

o HTTP/1.1" 405 574 ™
HITP/1 1" 200 2|

_static/up-pressed.png

